Lecture 10: Second derivative test; and boundaries and infinity

Lecture 10: Second derivative test; and boundaries and infinity
  • Currently 4.0/5 Stars.
3590 views, 2 ratings - 00:52:17
Taught by OCW
Denis Auroux. 18.02 Multivariable Calculus, Fall 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (Accessed March 15, 2009). License: Creative Commons Attribution-Noncommercial-Share Alike.
Learn about the second derivative test and how it can be used to determine things about critical points.
  • How can you determine if a critical point is a local minimum, a local maximum, or a saddle point?
  • How do you find global minimum and maximum points of a function?
  • What is the second derivative test?
  • How can you tell what a critical point is using 4ac - b^2?
  • What is the quadratic approximation formula?
  • What are the critical points of f(x,y) = x + y - 1/xy?
This lesson continues the idea of critical points and minimum and maximum optimization problems to find global maxima and minima. This proves to be much more interesting and fulfilling than the previous lecture, as you can determine much more about the graph using the second derivative test. At the end of the lecture, an actual concrete problem is done.
  • Currently 4.0/5 Stars.
Reviewed by MathVids Staff on March 15, 2009.
 
Browse Store
App_store_badge Smart-logo