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Problem Set 4 – Induction and Recurrence Equations 

 
1. What’s wrong with the following proofs by induction? 
 

a. All binary strings are identical.  The proof is by induction on the size of the string.  
For n=0 all binary strings are empty and therefore identical.  Let X = bnbn-1…b1b0 
be an arbitrary binary string of length n+1.  Let Y = bnbn-1…b1 and Z = bn-1…b1b0.  
Since both Y and Z are strings of length less than n+1, by induction they are 
identical.  Since the two strings overlap, X must also be identical to each of them.   

b. Any amount of change greater than or equal to twenty can be gotten with a 
combination of five cent and seven cent coins.  The proof is by induction on the 
amount of change.  For twenty cents use four five-cent coins.  Let n > 20 be the 
amount of change.  Assume that n = 7x + 5y for some non-negative integers x and 
y.  For any n > 20, either x > 1, or y > 3.  If x > 1, then since 3(5) – 2(7) = 1, n+1 = 
5(y+3)+7(x–2).  If y > 3, then since 3(7) – 4(5) = 1, n+1 = 7(x+3)+5(y–4).  In either 
case, we showed that n+1 = 7u + 5v where u and v are non-negative integers. 

 
2. Prove by induction that: 
 

a. The nth Fibonacci number equals (1/√5)[(1/2 + √5/2)n – (1/2 – √5/2)n ], where F0 = 
0 and F1 = 1. 

b. The sum of the geometric series 1 + a + a2 + … + an equals (1–an+1)/(1–a), where a 
does not equal one. 

c. 21 divides 4n+1 + 5 2n-1 
d. The number of leaves in a complete binary tree is one more than the number of 

internal nodes.  (Hint:  Split the tree up into two smaller trees). 
e. A graph’s edges can be covered by n edge-disjoint paths, but not n-1, if and only if 

the graph has n pairs of odd-degree vertices.  (Euler discussed the case for n = 1). 
 

3. Solve the following recurrence equations using the techniques for linear recurrence 
relations with constant coefficients.  State whether or not each recurrence is homogeneous. 

a. an = 6an-1 − 8an-2, and a0 = 4, a1 = 10. 
b. an = an-1 + 2an-2, and a0 = 0, a1 = 1. 
c. an = 7an-1 −10an-2 + 3n, and a0 = 0, a1 = 1. 
d. an = 3 − 6an-1 − 9an-2, and a0 = 0, a1 = 1. 



 
4. A particular graph-matching algorithm on n nodes, works by doing n2 steps, and then solving a 

new matching problem on a graph with one vertex less. 
 

a. Show that the number of steps it takes to run the algorithm on a graph with n nodes is 
equal to the sum of the first n perfect squares. 

b. Derive the formula for the sum of the first n perfect squares by constructing an 
appropriate linear non-homogeneous recurrence equation and solving it. 

c. Show that the time complexity of this algorithm is θ(n3). 
 
5. Write a recurrence relation to compute the number of binary strings with n digits that do not have 

two consecutive 1’s.  Solve the recurrence, and determine what percentage of 8-bit binary strings 
do not contain two consecutive 1’s. 

 
6. Strassen’s algorithm shows how to multiply two n by n matrices by multiplying 7 pairs of n/2 by 

n/2 matrices, and then doing n2 operations to combine them.  Write the recurrence equation for 
this algorithm, and calculate the complexity of Strassen’s algorithm, by solving the recurrence by 
repeated substitution. 

 
7. Write and solve the recurrence equations for the time complexity of the following recursive 

algorithms.  Explain why your equations are correct. 
 

a. To search for a value in a sorted list, compare it to the middle value, and search the right 
half of the list if it is larger, and the left half if it is smaller. 

b. The maximum of a list of numbers is the larger of the maximum of the first half and the 
maximum of the second half. 

c. To sort a list of numbers, divide the list into four equal parts.  Sort each part.  Merge 
these sorted four lists into two sorted lists, and then merge the two into one. 

 
8. Solving the following recurrence by a change of variable: an = 2a√n + lg n  (Solve by setting m = 

lg n).  You should solve this only when n is 2 to the power of 2k. 



 
 

9. Parenthesized Expressions 
 

a. A sequence of n+1 matrices A1A2…An+1 can be multiplied together in many different 
ways dependent on the way n pairs of parentheses are inserted.  For example for n+1 = 3,  
there are two ways to insert the parentheses: ((A1A2)A3) and (A1(A2A3)).  Write a 
recurrence equation for the number of ways to make a balanced arrangement of k pairs of 
parenthesis.  Do not solve it.  (Hint: Concentrate on where the last multiplication occurs).   

b. Write a list of the different ways to parenthesize a sequence of n+1 matrices for n+1=2,3,4.
c. A balanced arrangement of parenthesis is defined inductively as follows:   

The empty string is a balanced arrangement of parentheses.  If x is balanced 
arrangement of parentheses then so is (x).  If u and v are each a balanced arrangement 
of parentheses, then so is uv.    

Write a list of strings that represent a balanced arrangement of n parentheses for n=1,2,3. 
d. Describe a 1-1 correspondence between the strings that are balanced arrangements of n 

pairs of parentheses, and the number of ways to multiply a sequence of n+1 matrices.   
 

10. Prove that any O(|E|) time algorithm on a planar graph is also O(|V|).   (Hint:  Use the fact that 
every face has at least three vertices and edges, and a counting argument, to calculate a 
relationship between the number of faces and the number of edges.  Then use Euler’s Theorem to 
derive a linear relationship between the number of edges and the number of vertices.) 

 
11. The following recurrence cannot be solved using the master theorem.  Explain why.  Solve it 

directly by substitution, and calculate its order of growth. 
 

T(n) = 4T(n/2) + (nlogn)2 and T(1) = 1. 
 

 
 
 
 


