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Lecture Notes 

 
 
What is Discrete Math?  
 
Example of continuous math – Given a fixed surface area, what are the dimensions of a cylinder 
that maximizes volume? 
 
Example of Discrete Math – Given a fixed set of characters, and a length, how many different 
passwords can you construct?  How many edges in graph with n vertices?  How many ways to 
choose a team of two people from a group of n?  How many different binary trees (is it worth 
checking them all to find a minimum spanning tree of a graph – a tree that includes all the vertices 
of a weighted edge graph, with minimum sum of weights)?  How many ways to arrange n arrays 
for multiplication?  How many ways to draw n pairs of balanced parens? 
 
Note that the last 3 examples have the same answers (not obvious). 
 
Note the second and third examples have the same answer (obvious). 
 
Counting is an important tool in discrete math as we will see later. 
 
  
What are proofs? 
 
Formal definitions and logic versus… 
 
A proof is a clear explanation, accepted by the mathematical community, of why something is true. 
 
 
Examples…. 
 
Ancient Babylonian and Egyptian mathematics had no proofs, just examples and methods. 
Proofs in the way we use them today began with the Greeks and Euclid. 
 
1.  The square root of two is irrational - A proof by contradiction from Aristotle. 
 
Assume that a/b = √2, where a and b are relatively prime.  Squaring both sides of the equation 
gives a^2/b^2 = 2.  Then a^2 = 2b^2, and since an even number is any number that can be written 
as 2k, a^2 must be even.  By a separate lemma, we know that if a^2 is even, then a must also be 
even.  So write a = 2m.  Then a^2 = (2m)^2 and a^2 = 4m^2, and 2b^2 = 4m^2, so b^2 is even, and 
b is even..  But we assumed without any loss of generality that a and b were relatively prime, and 
now we have deduced that both are even!  This is a contradiction, hence our assumption that a/b = 
√2 cannot be right. 



 
 
2.  There are an infinite number of prime numbers – A proof by contradiction by Euclid. 
 
Assume that there is a finite number of prime numbers.  Construct their product and add one.  
None of the prime numbers divide this new number evenly, because they will all leave a remainder 
of one.  Hence, the number is either prime itself, or it is divisible by another prime not on the 
original list.  Either way we get a prime number not in the original list.  This is a contradiction to 
the assumption that there is a finite number of prime numbers.  Hence our assumption cannot be 
correct. 
 
 
Discovering theorems is as important as proving them.   
 
Examples: 
 

1. How many pairs of people are possible given a group of n people? 
 

Constructive counting method:  The first person can pair up with n-1 people.  The 
next person can pair up with n-2 people etc, giving (n-1) + (n-2) + … + 2 + 1 
 
Counting argument:  Each person of n people can pair up with n-1 other people, but 
counting pairs this way, counts each pair twice, once from each end.  Hence we get 
a total of n(n-1)/2. 
 
 

2. Define the triangle numbers.  How big is the nth triangle number? 
 

Geometric argument – If n is even, (n+1)(n/2).  If n is odd, (n)((n+1)/2).  These 
cases seem unnecessary to our algebraic eyes, but in the middle ages, before 
algebra, each of these was listed as a separate theorem described in words. 
 
A pairing idea - Pair the numbers up one from each end, working inwards.  The 
Gauss legend tells a story of the 8-year old wunderkind being told by a teacher to 
add up the numbers from to 100.  The teacher had hoped this would keep Gauss 
busy for a few minutes.  Gauss presumably derived this formula on the spot and 
blurted back 5050.  Note that later in his life it is well documented that Gauss was 
quite proud of his proof that any integer can be written as a sum of at most three 
triangle numbers. 

 
3. How many pieces do you get from cutting a circle with n distinct cuts? (make sure we 

define distinct carefully). 
 

The first few numbers of cuts and pieces can be listed below as we experiment: 
 
Cuts  Pieces 



1 2 
2 4 
3 7 
4 11 
 
We can argue that the P_(n+1) = P_n + n+1.  Every new cut intersects each of  the 
old cuts in one unique place.  Hence each new cut creates 1 more region than the 
number of cuts already made, because it creates a region as it exits the circle.  This 
is called a recurrence equation and we can solve it directly (see week 3 in syllabus).   
 
Note that T_(n+1) = T_n + n+1.  This is the same equation, but P_n does not equal 
T_n!  What gives?  The difference is that P_1 = 2 and T_1 = 1. 
 
We know that T_n = (n)(n+1)/2 and it seems that P_n = T_n + 1. 
 
Can we prove this last fact, namely P_n = T_n + 1?  If so, it would immediately 
imply that P_n = (n^2 + n + 2)/2.  There are many ways to prove this formula 
including a neat technique called finite differences, but we will use a technique 
called mathematical induction 

 
 
Proofs by induction – The most common method of proof in computer science. 
 
Strategy – To prove something for an infinite number of cases.  Start by identifying a variable 
which will be used to index the infinite number of cases.  In our case, this will be n.  The proof 
proceeds “by induction on n”.  Note that sometimes the choice of variable is not immediately 
obvious and a good choice can make the proof simpler. 
 
Show that the theorem is true for a start value of n.  In our case we can use n =1 .  Since P_1 = 2, 
we can check that (1^2 + 1 + 2)/2 = 2, and it does. 
 
Then try to show that IF the theorem is true for the nth case, then it must also be true for the n+1st 
case.  The idea is to focus on the transition from smaller cases to larger cases. 
 
In our case, let’s assume that P_n = T_n + 1, and try to show that P_(n+1) = T_(n+1) + 1.   
We know from our own analysis that P_(n+1) = P_n + n + 1, and from our assumption, we can 
derive that P_(n+1) = (T_n + 1) + n + 1.  Also, we know that T_(n+1) = T_n + n + 1, so we 
conclude that P_(n+1) = T_(n+1) + 1, QED. 
 
It takes a lot of experience before proofs by mathematical induction start to lose their magic, and 
yield up their real ideas.  The interactive lectures supporting these notes is a crucial guide to the 
ideas here.   
 
Recitation – Proof by induction of Euler’s Thm on planar Graphs.  A Combinatorial card trick. 
 
 



 
 
 Formal Proof, Logic and Boolean Algebra 
 
We can represent facts by Boolean variables, variables whose values are true or false (1 or 0).  We 
can combine these variables using various operators, AND, OR and NOT.   We can specify all 
sorts of logical statements using other operators, but they can always be transformed back to a 
formula containing just AND, OR and NOT. 
 
Example: 
Let W = wet outside.  Let R = raining. 
 
It is raining and it’s wet outside. W AND R WR W∧R 
It is raining or it’s wet outside. W OR R W+R   W∨R 
It is not raining   NOT R  ¬R  
If it’s raining then its wet outside.   R � W 
Either it’s raining or it’s wet outside but not both.  (R+W) ¬(RW)  (¬RW)+(¬WR) 
 
 
Let’s look at the fourth example.  The logic of this is equivalent to:  if R is true then W is true;  but 
if R is false then W can be anything.  Let’s make a truth table of this below: 
 
R W R � W 
0 0 1 
0 1 1 
1 0 0 
1 1 1 
 
This idea of a truth table is a sure fire to show the equivalence of Boolean expressions. 
 
It can be seen that the above formula R � W is equivalent to: (¬R¬W)+(¬RW)+(RW).  It is 
constructed by looking in each row that has a 1 appearing at the right end.  These are the rows for 
which the formula is true.  We simply write down the possible values for each combination of 
variables that can make these 1’s occur, and OR them altogether.  For each combination of 
variables we AND the conditions on each variable.  The method used here to compute this formula 
implies a proof that any Boolean expression can be represented by a combination of ANDs ORs 
and NOTs.  It is also equivalent to ¬R + W. 
 
Truth tables can be made for AND, OR, NOT, Exclusive OR (the fifth example), implies (the 4th 
example).  Note there may be many different Boolean expressions that are equivalent to each other 
logically.  Note that with n variables, a truth table will have 2^n rows. 
 
Last Example.  Make a truth table for (R� W) AND (W � R).  This is sometimes called ⇔ or 
simply =. 
 
R W  R⇔W 



0 0 1 
0 1 0 
1 0 0 
1 1 1 
  

The Algebra of Bits – Boolean Algebra 
 
Here we treat the manipulation of Boolean expressions syntactically and note the analogy to 
addition and multiplication, where true is the value 1 and false is the value 0.  AND, OR are 
commutative, and they are mutually distributive.  There are two rules called DeMorgan’s Laws 
that relate NOT to AND and OR. 
 
Here is a summary of the rules of Boolean Algebra.  They all can be verified by truth tables and 
the definitions of the operators. 
 
P + true = true  ¬PP = false 
P(true) = P  ¬P + P = true 
P + false = P  P(Q+R) = PQ + PR 
P(false) = false PQ + R = (P+R)(Q+R)  
(note that this last beautiful dual rule is not true for regular addition and multiplication.). 
DeMorgan’s Laws:  ¬(P + Q) = ¬P¬Q  ¬(PQ ) = ¬P + ¬Q 
 
Boolean algebra is useful not only in logic but more importantly in the design of digital circuits at 
the heart of making a computer work.  It allows the manipulation of Boolean expressions from one 
form to another without the need for truth table verification. 
 
Example:  Show that ¬X(X+Y) �  Y is equal to true. 
 ¬X(X+Y) �  Y   
 ¬(¬X(X+Y)) + Y  P� Q equals ¬P + Q 
 X + ¬(X+Y) + Y De Morgan’s Laws 
 (X+Y) + ¬(X+Y) Commutativity and Associativity of + 
 true   ¬P + P = true 
 
In this example, you should identify which rule is applicable at each step. 
 
Example:  (R+W) ¬(RW) =    (¬RW)+(¬WR) 
 R¬(RW) + W¬(RW) 
 R(¬R+¬W) + W(¬R + ¬W) 
 ¬RR + ¬WR + ¬RW + ¬WW 
 (¬RW)+(¬WR) 
 
 
Theorem:  Any Boolean function can be described using just AND, OR and NOT operators.   
 
Proof by example above. 
 



The resulting expression is an OR of a collection of variables or their negations that are ANDed 
together.  This is called Disjunctive Normal Form.  The Conjunctive Normal form of a Boolean 
expression can also always be constructed and it is an AND of a collection of variables or their 
negations that are ORed together.  Note again the intense symmetry in Boolean Algebra. 
 

Complete Operators 
 
A set of operators that can describe an arbitrary Boolean function is called complete.  The set 
{AND, OR, NOT} is complete.  There are certain operators that alone can describe any Boolean 
function.  One example is the NOR operator ↓.  P↓Q is defined to be ¬(P+Q).  You can verify that  
¬P = (P↓P) 
PQ = (P↓Q) ↓(P↓Q) 
P+Q = (P↓P) ↓(Q↓Q) 
 
These three equations imply that NOR is complete. 
 
Recitation – Predicates and higher order Logic.  Quantifiers and rules for substitution and pushing 
through of negations. 
 
Applications in Computer Science: 
 
 
Example:   The Satisfiability problem and NP-Completeness.   
 
Reductions 
 
Informally, a reduction is a transformation of one problem into another.  It is a fundamental notion 
in algorithms, theory of computation, and good software design. 
 
The idea behind Reductions: 
 
“Q:  What do you feed a blue elephant for breakfast?” 
“A: Blue elephant toasties”. 
“Q:  What do you feed a pink elephant for breakfast?” 
“A:  You tell the pink elephant not to breathe until he turns blue, then you feed him blue elephant 
toasties”. 
 
This comes from The Funnybone Book of Jokes and Riddles, ISBN 0-448-1908-x. 
 
Reductions are crucial to showing that a problem is hard.  We cannot in general prove that a 
problem is hard.  We would have to show that no algorithm is efficient, and there are a lot of 
algorithms!  On the other hand, we can show that a problem is easy but exhibiting just one good 
algorithm.  What computer scientists can do, is to prove that a problem is NP-Complete.  This does 
NOT mean it is definitely hard, but it means it is at least as hard as a whole host of other well 
known difficult problems.   
 



NP is the set of all problems solvable in polynomial time by a non-deterministic program.  Yikes, 
what does that mean?  Wait until the algorithms course.  But basically, it means that you can verify 
a guess of the solution in polynomial time.  Non-determinism gives you lots of power.  No one 
knows how to simulate non-deterministic programs efficiently with deterministic (normal) 
programs.  Any general simulation known requires an exponential growth in time requirements. 
 
An NP-Complete problem is a problem in NP to which all the problems in NP can be reduced in 
polynomial time.  This means that if you could solve the NP-Complete problem in polynomial 
time, then you could solve all the problems in NP in polynomial time.  So if your boss gives you a 
hard problem, you can’t say “Sorry boss, it can’t be done efficiently”, but at least you can say “I 
can’t do it boss, but neither can all these other smart people”.   
 
P is the set of problems that can be solved by normal deterministic programs in polynomial time 
 
The greatest open question in computer science is whether P = NP.   If a problem is NP-Complete, 
and someone comes up with a polynomial time algorithm for it, then P = NP.  No one really 
believes that P = NP, but showing otherwise has eluded the best minds in the world. 
 
Satisfiability was the first problem proved to be NP-Complete.  The problem gives you a Boolean 
formula in conjunctive normal form, and asks whether or not there is an assignment of True/False 
to the variables, which makes the formula true.  Note that a brute force algorithm for this problem 
runs in 2^n * m time where n is the number of variables and m is the number of clauses.   A non-
deterministic polynomial time algorithm verifies a guess of the solution in m time. 
 
Satisfiability reduces to 3SAT. 
 
An input to SAT is a formula F in conjunctive normal form (AND of ORs).  Convert the clauses in 
F according to the following rules: 
 
We show how to convert formulas with an arbitrary number of variables per clause, into an 
equivalent set with exactly 3 per clause. 
 
One variable in the clause:  (x) = (x+a+b)(x+a+-b)(x+-a+b)(x+-a+-b) 
Two variables in the clause: (x+y) = (x+y+c)(x+y+-c) 
Three variables in the clause: (x+y+z) = (x+y+z) 
Four or more variables in the clause: (u+v+w+x+y+z) = (u+v+d)(-d+w+e)(-e+x+f)(-f+y+z) 
 
You can prove that the new set of clauses is satisfiable iff F is satisfiable.  Also the new set has 
exactly 3 variables per clause.  Finally note that this reduction can be done in time proportional to 
the m*n, where m is the number clauses and n is the number of variables.  An example will be 
done in class. 
 
This implies that 3SAT is at least as hard as Satisfiability. 
 
2SAT reduces to Cycles in Graph. 
 



Given a Boolean expression in conjunctive normal form with two variables per clause, create a 
graph G = (V, E) where V = {x, -x} for all variables x, and E = {(-x, y), (-y, x) for each (x+y) 
clause.  The formula is not satisfiable if and only if there is a cycle in G including x and –x for 
some vertex x.   This is equivalent to a strongly connected component containing both x and –x.  
This can be done in O(edges) time. 
 
Note that a directed edge in the graph from x to y means that if x is true in the formula then y must 
be true.   This idea is the key to the reduction.  For example (x + -y) (y + -w) (-x + -y) (z + y) (-z + 
w) is not satisfiable and will result in a graph with a cycle including y and –y.  Note how much 
information the graph shows at a glance.  It shows that if y is true then x and –x must be true, 
hence y must be false.  But if y is false then –y is true and that implies via a chain through z and w, 
that y is true.  Hence there is no satisfiable assignment that works.  Graphs are a superb tool for 
visualization of subtle dependencies.   
 
This implies that 2SAT is no harder than the Cycles in Graph problem. 
 
Note how reductions can be used to show that a problem is easy or hard, depending on the 
problems to and from which we are reducing.  To show a problem is hard, reduce a hard problem 
to it.  To show a problem is easy, reduce it to an easy problem.  This is why we choose the <= 
symbol to indicate A <= B when a problem A reduces to a problem B.   
 
Example:  Theorem Proving by Resolution: 
 
Mechanical Theorem proving is a wide area of research whose techniques are applicable to the 
wider field of database query processing, and the logic paradigm of programming languages. 
 
To prove a theorem we can represent the hypotheses H_i by logic expressions, and the theorem T 
by another expression.  H_1 and H_2 and … H_n implies T,  can be checked mechanically, by 
checking whether H_1 and H_2 and … H_n and NOT(T) is false.  If it is false, then the theorem is 
true.  Theorem Proving is a large area of research, but one basic idea uses resolution.  Resolution is 
a way to reduce two expressions into an implied simpler expression.  In particular,  (A or Q) and 
(B or –Q) is equivalent to the simpler expression (A or B).   
 
 Let R mean it’s raining, W mean it’s wet outside, C mean my driveway is clean.  Say we 
know that R implies W,  W implies C, and that now it is either raining or wet outside.  Prove that 
my driveway is clean.   
 
1. -R + W  given 
2.  -W + C given 
3. W + R given 
4.  –C  theorem negated 
5.  W  resolve 1, 3 
6.  C  resolve 2, 5 
7.  false resolve 4, 6   QED. 
 



 Theorem proving usually works in higher order logic, where the idea is identical, except for 
the presence of quantifiers and functions.  Your Scheme text talks about unification, to handle 
matching up clauses.  But this is out of our territory.  All you really need to know is that a 
universal quantifier can be replaced with any value you like, and an existential quantifier can be 
replaced with a specific that must not be dependent on other variables.   
 

Recitation – Resolution with quantifiers and unification. 
 
Logic Based Programming Languages – 
 
Another place where theorem proving shows up in disguise is in the implementation of a 

Logic based programming languages, namely Prolog.  The execution of a Prolog program, is 
theorem proving in disguise.  The program is described by a list of FACTS and RULES, and we 
provide the system with a QUERY, which it tries to prove from the FACTS and RULES.  The 
same idea comes up in the query processing for database languages.   

 
Recitation -  Some examples of Prolog programs and how they are executed. 
 

 
 
Example:  Digital Circuits, Binary Addition – Half Adders, Threshhold Circuits 2,3 
 
A half adder takes two binary inputs and outputs their sum.  The truth table is shown below: 
 
Bit1 Bit2 Carry Sum 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 
 
We can calculate by our algorithm a disjunctive normal form:  
Carry = Bit1 and Bit2   Sum = (-Bit1 and Bit2) or (Bit1 and –Bit2) 
 
In class we will make the pictures for these circuits as explained in section 9.3 of the text. 
 
 
A threshold circuit is a type of circuit used to simulate neurons.  An a,b threshhold circuit has b 
inputs and one output.  The output is 1 iff a input bits or more are 1.  For example: 
 
In1 In2  In3 Out 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 



1 1 0 1 
1 0 1 1 
1 1 1 1 
 
Out = (-In1 and In2 and In3) or (In1 and -In2 and In3) or (In1 and In2 and -In3) or (In1 and -In2 
and In3) or (In1 and In2 and In3). 
 
Note this is equivalent to (In1 and In2) or (In1 and In3) or (In1 and In3).  DNF is not always the 
simplest formula. 
 
 
Sets  
 
 What are sets?  Unordered collections of things. 
 
 In computer science we see them in theory, software engineering, data structures and 
algorithms, (for example, did someone choose one of the legal set of choices in a program?)  In 
algorithms there is an efficient algorithm called Union-Find which allows us to combine smaller 
objects into larger ones, and identify an object by name.  It is used in many applications including 
minimum spanning tree, where the sets contain edges. 
 
 We specify sets using curly brackets with a list of elements, or we can describe the 
elements.  For example V = {a, e, i, o, u} is the set of vowels in English.  B = {0, 1} the set of 
symbols in the binary number system.  O = {2, 4, 6, …} = {x : where x is an even positive 
integer}.  Sets can be infinite of course.  Whenever we speak use sets there is an implicit Universal 
set of which all the sets in question are subsets.  There is also an empty set {}= ∅. 
 
 The notion of a subset, a proper subset, union, intersection and complement must be 
defined through logic.  There are many theorems regarding the relationship between these 
operators on sets.  For the most part they have counterparts to similar theorems in Boolean algebra. 
  
 Universal  and Complement Laws 
 A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A 
 A ∪ Ac = U Uc = ∅  A ∩ Ac = ∅ 
 
 Commutative Laws  
 A ∪ B = B ∪ A  A ∩ B = B ∩ A 
 
 Associative Laws 
 A ∪ (B ∪ C) =  (A ∪ B) ∪ C  A ∩ (B ∩ C) =  (A ∩ B) ∩ C 
  
 Distributive Laws 
 A ∪ (B ∩ C) =  (A ∪ B) ∩ (A ∪ C) 
 A ∩ (B ∪ C) =  (A ∩ B) ∪ (A ∩ C) 
 
 De Morgan’s Laws 



 (A ∩ B)c = Ac ∪ Bc 
 (A ∪ B)c = Ac ∩ Bc 
 
 We will prove the distributive laws by unraveling the expressions about sets into Boolean 
expressions.  The laws involving union, intersection and complement come from their counterparts 
of OR, AND and Complement. 
 
 Example: 
 
 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
 The set of all elements of the left side equals {x | (x ∈ A) or ((x∈B) and (x∈C))} = {x | ((x 
∈ A) or (x∈B)) and ((x∈A) or (x∈C))} = {x | x ∈(A∪ B) and x∈ (A ∪ C)} = {x | x ∈ (A ∪ B) ∩ 
(A ∪ C)} = the set of all elements on the right side. 
 
 Once we have proved this theorem about sets by unraveling the associated Boolean logic, 
we can prove more theorems about sets by induction: 
 
 For example:  Let’s prove a generalization of the distributive theorem we just proved 
before.  Namely:  A ∪  (B1 ∩ B2 ∩ … ∩ Bn) = (A∪B1) ∩ (A∪B2) ∩ …  ∩ (A ∪Bn) 
 
The proof is by induction on n. 
 
The base case is when n=2.  This is the theorem we previously proved. 
 
Now let’s prove that: 
 A ∪  (B1 ∩ B2 ∩ … ∩ Bn ∩ Bn+1) = (A∪B1) ∩ (A∪B2) ∩ …  ∩ (A ∪Bn) ∩ (A ∪Bn+1) 
 
By associativity of intersection, 
 A ∪  (B1 ∩ B2 ∩ … ∩ Bn ∩ Bn+1) = A ∪ ((B1 ∩ B2 ∩ … ∩ Bn) ∩ Bn+1).   
By the distributive theorem (base case again) we know that: 
A ∪  ((B1 ∩ B2 ∩ … ∩ Bn) ∩ Bn+1) =  (A ∪  (B1 ∩ B2 ∩ … ∩ Bn)) ∩ (A ∪ Bn+1) 
By the induction hypothesis,  
A ∪  (B1 ∩ B2 ∩ … ∩ Bn) = (A∪B1) ∩ (A∪B2) ∩ …  ∩ (A ∪Bn).  Hence, 
A ∪  (B1 ∩ B2 ∩ … ∩ Bn ∩ Bn+1) = (A∪B1) ∩ (A∪B2) ∩ …  ∩ (A ∪Bn) ∩ (A ∪ Bn+1) QED. 
 
This theorem screams for an inductive proof.   Some theorems are more naturally conducive to 
inductive proofs than others.  The key feature to look for is the ease with which larger cases can be 
made to depend specifically on the smaller cases. 
 
There are two major tricks for counting: 
 

A. If you can’t count what you want – count the complement instead. 
B. Count double in a controlled fashion. 

 
A nice example of the former trick, is when we want to count the number of ways n people can 
have at least one common birthday.  Instead we count the number of ways for n people to have all 



different birthdays.  This value is then subtracted from the total number of ways for n people to 
have birthdays.  It is generally easier to count things when the conditions are ANDed together, as 
in “person 1 has a different birthday AND person 2 has a different birthday etc”, as opposed to 
when the conditions are ORed together, as in “person 1 has the same birthday as someone else OR 
person 2 has the same birthday etc.”. 
 
A nice example of the latter trick is the triangle numbers (again).  To count the maximum number 
of edges in a graph with n vertices, (or equivalently, the number of pairs of people we can choose 
from a set of n people), we can say that each one of the n vertices can connect to n-1 other vertices.  
This gives n(n-1) edges.  But we have counted each edge exactly twice, once from each end of the 
edge.  This means the total number of edges is n(n-1)/2.   
 
Venn Diagrams can be used to illustrate relationships between sets and to motivate an important 
counting theorem regarding sets – the inclusion/exclusion theorem. 
 
The incl/excl theorem for sets makes use of both of these kinds of tricks. 
 
We will discuss this theorem in class and prove it for n=2 and 3.  A more general proof by 
induction can be constructed in a style similar to the proof of the general distributive law, as we 
did before. 
 
Let |X| be the number of elements in a set X.  This is often called the cardinality of X. 
 
Then the incl/excl theorem for n=2 states. 
 
|A ∪ B| = |A| + |B| - |A ∩ B|   
 
A Venn diagram makes it clear why this theorem is true.  A and B count the elements in A ∪ B, 
but they count the A∩B section twice.  The case for 3 can be analyzed with a little difficulty from 
a 3-circle diagram and results in: 
 
|A ∪ B ∪ C | = |A| + |B| + |C| - |A ∩ B|  - |A ∩ C| - |B ∩ C|  + |A ∩ B ∩ C| 
 
The theorem generalizes to any number of sets, by adding up the cardinalities of the single sets, 
subtracting the cardinalities of the intersections of each pair, adding the cardinalities of the 
intersections of each triple etc. 
 
The theorem can be used to solve a variety of straightforward and subtle counting problems.  An 
example of a famous but subtle use is to calculate the number of derangements of a particular set.  
For example, if all of you bring lunch, and I collect them and redistribute them randomly, how 
many of the n! random permutations result in none of you getting your own lunches back?  We 
will solve this problem in the unit on counting in two weeks. 
 
An easier kind of problem that can be solved with incl/excl is the following type: 
 
How many numbers between 1 and 100 are divisible by 3 or 7? 



 
This is hard to count, but the number divisible by 3 and 7 is easy to count.  It is just the number of 
numbers divisible by 21.  Let A = the number of numbers between 1 and 100 that are divisible by 
7, and B = the number of numbers between 1 and 100 that are divisible by 3.  The theorem states 
that |A ∪ B| = |A| + |B| - |A ∩ B|.  Hence the number of numbers between 1 and 100 that are 
divisible by 7 or 3 equals = 100/7 + 100/3 – 100/21 = 14 + 33 – 4 = 43. 
 
Assume there are 12 people all of whom are either computer scientists or smart or both.  Ten of 
them are smart and 5 are computer scientists.  How many people are both smart and computer 
scientists?  12 = 10 + 5 – x.  So x = 3. 
 
There are more complicated versions of these kind of problems (see psets). 
 
 
Sets as data structures 
 
 In most programming languages, sets are represented by bit strings.  The number of bits is 
equal to the number of elements in the universal set.  Ones appear in the slots of the elements 
contained in that set.  Note that this implies an ordering to the elements of the set which does not 
strictly exist in the mathematical definition of a set. 
 
 It is convenient to store sets this way because: 

1. It uses very little space, and 
2. Set operations can be done using and/or/not bit-wise operators. 

 
For example, assume you have 16 elements in the universal set and you want to know whether 
your set A contains element 3, then you can compute: A and ‘0010000000000000’.  If this 
equals 0 then the answer is false, else true.  Note that this is sometimes called masking, where 
the 0’s mask out the bits in A that we do not care to look at.  This also motivates the reason 
why in many languages, all 0’s is considered false and anything else is true. 
 
Any kinds of operations you want to do with sets can be simulated this way with bit operations. 
 
The idea is often used in a different context when we want to look at particular bits in an 
arithmetic algorithm for overflow or carry information. 

   
 
Functions and Countability of Sets 
 
It is easy to compare the cardinality of finite sets by just seeing which set has greater or fewer 
elements.  Comparing infinite sets is a more difficult issue.  For example, which set has more 
elements, the set of all integers or the set of all even integers?  Cantor, in the late 1800s, gave us a 
way to compare infinite sets.  He suggested that two sets would have the same “size” if and only if  
there is a 1-1 correspondence between the elements in the two sets.   In the previous example, there 
is such a 1-1 correspondence.  An element x in the set of all even integers corresponds to the 



element x/2 in the set of all integers.  This means that we must change our intuition to think of 
such sets as the same size even though there seems to be twice as many in one as the other.   
 
We say that a set is countable iff it is the same size as the set of natural numbers.     
 
Example:   The set of all integers is countable. 
 Let x in the set of integers correspond to the natural number 2x if x >=0 and -(2x+1) if x<0. 
 
Recitation:  Pairs of integers are countable.  Real numbers are not countable.  Diagonalization.  In 
the pset you will show that triples and n-tuples of integers are countable.  Rational numbers are 
like pairs so they are countable. 
 
The power set of a set A is the set of all subsets of A.  The cardinality of the power set of A is 
2^|A|.  This can be proved by induction – see pset 2 – or by creating a 1-1 correspondence with the 
number of rows in a truth table.  Given an assignment of T/F to a set of variables, associate the set 
of all variables that are marked true.  Since we know there are 2^n assignments of T/F to n 
variables, then there are 2^|A| subsets of a set with |A| elements. 
 
Cantor proved that the power set of A has cardinality greater than A.  This gives a hierarchy of 
infinities.  This hierarchy, as you will learn, implies the existence of functions that have no 
programs to compute them.  That is, there are more functions than there are programs.  In class we 
will discuss the relationship of this idea and diagonalization.  In particular there is no program that 
computes whether an arbitrary program accepts itself or not. 
 
Functions and Order of Growth 
 
A function is a rule that maps each value in a domain to a particular value in some range.  A 
function is onto, when every value in the range has at least one value in the domain that maps to it.  
A function is 1-1 when every value in the range has at most one value in the domain that maps to 
it.  (These definitions are not always standard formal way to define these ideas, but they are 
equivalent).  A function is a 1-1 correspondence when it is both onto and 1-1.  When this is the 
case, then the inverse of the function is also a function.  This is the kind of function that Cantor 
insisted on. 
 
For future reference, R is the set of real numbers, N is the set of natural numbers, Z is the set of 
integers, Q is the set of rationals. 
 
Examples:  f(x) = x^2 maps from R to R.  It is onto but not 1-1.  It’s inverse (square root) is not a 
function.   f(x) = x+1 from R to R is onto and 1-1.  It’s inverse is f(x) = x-1.  f(x) = x^2 maps from 
N to N is 1-1 but not onto.  It does not have an inverse because not every integer has an integer 
square root.  f(x) = 

�
x �  maps from R to Z, is onto but not 1-1.  Its inverse is not a function because 

one value gets mapped to many. 
 
Functions, especially those with finite domain and range, are sometimes represented by a picture 
with arrows showing the mapping. 
 



In CS, it is fundamental to be able to measure one function’s rate of growth relative to another.  
Functions often represent time complexity of an algorithm where the input to the function is the 
size of the input to the algorithm.  In order to compare which algorithm is theoretically faster or 
slower, we need to know what happens to the function as the size of the input grows.  It is not 
enough to do some engineering and measure particular sample inputs on particular machines.  
Experimental measurements are worth doing but they can be misleading.  We would prefer a 
metric that is independent of implementation and hardware.  Note, this preference is an ideal, and 
the theory does not always win out over engineering. 
 
We say that f(x) is O(g(x)) iff there exists constants c > 0 and x_0 > 0, such that f(x) <= cg(x) for 
all x > x_0.  It means that f(x) is bounded above by g(x) once we get passed x_0, as long as we 
don’t quibble about constant factors.  This means intuitively that 3n^3 is O(n^3).  Bounded below 
is defined similarly using Omega and >=.  Bounded strictly above is defined using < and small-o. 
 
We now work through a few examples showing how to find appropriate c and x_0 to prove that 
certain functions are Big-O of other functions. 
 
2n^3 – n^2 + 8n + 6 is O(n^3).  Let c = 17.  2n^3 – n^2 + 8n + 6 <= 2n^3 + n^3 + 8n^3 + 6n^3 = 
17n^3, for all n >0. 
 
Bubble sort gives a time complexity of n(n-1)/2.  This is Omega(n^2) because n(n-1)/2 >= (1/3) 
n^2 for all n>3. 
 
The minimum of steps to sort n items is lg (n!).  We prove that this is BigTheta(nlogn).  
lg n! is O(nlogn) by setting c=1, and noting that lg n! <= lg  n^n = nlgn.   
lg n! is Omega(n lgn) can be seen by writing n! >= n (n-1) … (n/2) >= (n/2)^(n/2).  Hence lg n! >= 
(n/2)(lg n/2) = n/2(lgn) – n/2 <= n/4 (log n) for all n >4. 
 
In recitation you can see an easier proof of this using Stirling’s approximation for n!. 
 
One can show that 2^(n+1) is O(2^n) but that 2^(2n) is not O(2^n).  In the first case, set c=2.  In 
the second case, note that the limit as n approaches infinite of (2^(2n))/ 2^n is infinite.  Hence no c 
will ever work.  This limit technique is especially useful.  For example, we can prove that 2^n is 
not O(n^2), since the lim 2^n/n^2 = lim (2^n)’’/(n^2)’’ = lim ((ln 2)(ln2) 2^n/2) = infinite.  (This 
uses L’Hospital’s rule. 
 
Sometimes we must make a change of variables to be able to more easily compare functions. 
Which is larger x ^lgx or (lg x)^x?  Let x=2^n.  Then x^(lgx) = 2^(n^2) and (lg x)^x = n^(2^n) = 
2^((lg n)2^n).  Hence (lg x)^x is larger because log n 2^n is bigger than n^2, as we showed just 
earlier. 
 
An easier problem this time.  Prove that both x lg (x^2) and (lg x^x) are big theta (x log x).  Details 
left to you. 
 
There are other techniques for estimating growth including integration, and example of which will 
be discussed in recitation, where we show that the sum of 1/I for I = 1 to n is Big theta log n. 



 
Working with sums.   
 
It is worth getting good at manipulating sums in discrete math because they come up so often.  
Today we look at the sum of the first n squares and derive a formula.  This formula can be 
estimated by integration (n^2/3), and it can be proved by induction, but the proof by induction is 
not so helpful in discovering the formula.  Contrast this with the proof for the sum of the first n 
cubes on your pset, where the induction implies the formula.  In 1321, Levi ben gershon proved 
formulas for the sum of the first n integers, squares and cubes.  He used induction only for the 
cubes. 
 
Let’s start with the sum 1 + 3 + 5 + 7 + .. + 2n-1.  It doesn’t take too long to realize that this equals 
n^2.  A picture proves it.    
 
*  * |* * |*|*  * |*|*|*  
 * *  * * |* * * |*|* 
  * * *  * * * |* 

* * * *  
 
 
This can of course also be proved by induction and the proof is natural. 
 
Now note that 1^2 + 2^2 + 3^2 + … =  1 + (1+3) + (1+3+5)  + … 
 
= Sum from i = 1 to n of (2i-1)(n-i+1).   This is more clear if you write the sum above like this: 
 
1+ 
1+3+ 
1+3+5+ 
1+3+5+7+… 
 
The key point here is that notation is not only useful as a shorthand – but it affects the way we 
think and what we are able to think about. 
 
This example will help us learn how to manipulate Sum notation, and appreciate the need for it. 
 
Sum from i = 1 to n of (2i-1)(n-i+1) = Sum 1 to n of (2in –2i^2 + 2i – n + i – 1) 
 
This implies that 3 * Sum of squares = (2n+3)Sum(i) –n^2 –n = (2n+3)(n)(n+1)/2 – n(n+1)  
 
Hence Sum of squares = (2n+1)(n)(n+1)/6 
 
 
Recurrence Relations and Geometric Sums 
 
 



Compound Interest…. 
 
Start with X dollars at 10% year.   
The number of dollars after the nth year equals 1.1 times the number of dollars after the previous 
year.   That is, D(n) = 1.1 * D(n-1), and D(0) = X. 
 
This is called a recurrence equation.  Recursion, mathematical induction, and recurrence equations 
are three legs of a three-legged stool.    The algorithm uses recursion, the proof it word uses 
mathematical induction, and the analysis of the time requirements results in a recurrence equation. 
 
The easiest and most common sense way to solve a recurrence equation is to use what I call 
repeated substitution.  It is a primitive brute force method that relies, in difficult cases, on the 
ability to manipulate sums.   
 
D(n) = 1.1 * D(n-1).   So we substitute for D(n-1), using D(n-1) = 1.1 * D(n-2), and we get: 
D(n) = 1.1^2 * D(n-2).  Continuing this r times, gives: 
 
D(n) = 1.1^r * D(n-r). 
 
Now D(0) = X, so if we let r = n, then we get: 
 
D(n) = 1.1^n * X 
 
 
The number of dollars after n years is shown below: 
 
Years Dollars 
 

0 X 
1 1.1 * X 
2 1.1^2 * X 
… 
n        1.1^n * X 
 
 
This recurrence is the simplest possible example.  The sum often develops into a geometric 
sum or something more complicated.  Sometimes the method gives a sum that’s too ugly to 
work with, and we need to use a different method.   
 
Binary Search –  
 
Ask if your guess is higher or lower to guess my secret number between 1 and n.  Each guess 
that you make halves the possible remaining secret numbers.  The time for this algorithm is:  
T(n) = T(n/2) + 1 and T(1) = 0. 
 
Using our substitution method we get: 



 
T(n) = T(n/2^r) + r,  after r iterations. 
 
Let r = lg n and this becomes T(n) = lgn 
 
 
Towers of Hanoi  -- the legend is only 100 years old or so �  
 
Define ToH (n, From, To, Using) 
 
 If n >0 {  
  ToH (n-1, From, Using, To); 
  Display (‘move disk from’ From ‘to’ To); 
  ToH (n-1, Using, To, From); 
  }  
 

Let’s analyze the time complexity, solve the resulting recurrence equation, and look at some 
special cases.  Then we look at a graph that will give us a bird’s eye view of the Hanoi recursive 
jungle.  The power of graphs will be seen in this example, and throughout the pset. 
 
T(n) = 2T(n-1) + 1 T(0) = 0 
 
After 1 iteration T(n) = 2^2 T(n-2) + 2 + 1 
 
After r iterations T(n) = 2^r T(n-r) + 2^(r-1) + 2^(r-2) + … + 4 + 2 + 1 
 
Letting r = n, we get Sum i = 1 to n-1 of  2^i. 
 

This is called a geometric series.  In a geometric series, each subsequent term increases by a 
fixed multiplicative factor.  Euclid (300 B.C.E.) knew all about geometric series and how to 
sum them.  An arithmetic series is one where each subsequent term increases by a fixed sum.  
The triangle numbers represent an arithmetic series. 
 
The trick to sum a geometric series is to multiply the series by the fixed multiplicative factor, 
and note that the result is the same series just shifted over one term.  For example. 
 
Let x = 1 + 2 + 2^2  + … + 2^(n-1) 
 
Then 2x = 2 + 2^2 + … + 2^(n-1) + 2^n 
 
At this point we subtract the two equations to give: 
 
2x – x = x = 2^n – 1 
 
Hence for ToH, T(n) = 2^n –1 
 



 
Now that we have opened the box of geometric series, let’s review 1/2^i. 
 
Let’s also consider the sum of i(2^i), or i^2(2^i), or i^k(2^i).  None of these are geometric series 
but they can all be handled by the same trick in an especially inductive way, where the next case 
reduces to the simpler case, and finally to the original geometric series. 
 
Example: 
 
Let x = 1*2 + 2*2^2 + 3*2^3 + … + n*2^n 
 
Here 2x –x = x = n*2^(n+1) – 2 – ( 2^2 + 2^3 + … + 2^n)  
 
We get a formula with a geometric series in it.  This formula equals n*2^(n+1) – 2 – (2^(n+1) – 4) 
=  (n-1) 2^(n+1) +2  
 
 
Many other basic sums can be managed with repeated use of this one trick. 
 
 
 
The Hanoi Graph 
 
 The Hanoi graph will be shown and discussed in class.  You can look for a picture on the 
web on Eric Weisstein’s math site mathworld.wolfram.com.  It is constructed recursively, defined 
inductively and analyzed.  It will give us a blueprint of the computation for ToH.  Note that a 
solution to ToH is a path through this graph. 
 
 
 
 
 
 



 
 
The next example of recursion is an excellent one for motivating induction.  We will discover the 
truth about the seven rings puzzle, and discover its connection to Hamiltonian circuits in 
hypercubes, and to Gray Codes.   
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